Isolation of Glycosidase-Inhibiting Hyacinthacines and Related Alkaloids from Scilla socialis

Atsushi Kato,*,* Noriko Kato,* Isao Adachi,* Jackie Hollinshead,§ George W. J. Fleet,* Chinami Kuriyama,[⊥] Kyoko Ikeda,[⊥] Naoki Asano,[⊥] and Robert J. Nash[§]

Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan, Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom, and Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan

Received February 25, 2007

An examination of the bulbs of Scilla socialis has resulted in the isolation of 11 hyacinthacines, two pyrrolidines, and three piperidines. The structures of the new alkaloids were elucidated by spectroscopic methods as β -1-Cethyldeoxymannojirimycin (5), hyacinthacines B₇ (10), C₂ (11), C₃ (12), C₄ (13), and C₅ (14), and α -5-C-(3-hydroxybutyl)hyacinthacine A₂ (15). Although, β -L-homofuconojirimycin (3) and α -7-deoxyhomonojirimycin (α -7-deoxy-HNJ, 4) are previously known alkaloids, this is the first report of their occurrence in the plant family Hyacinthaceae. Alkaloid 11 was found to be a good inhibitor of bacterial β -glucosidase and human placenta α -L-fucosidase, with IC₅₀ values of 13 and 17 μ M, respectively, while alkaloid 12 showed no inhibitory activity toward α -L-fucosidase but was a more potent inhibitor of bovine liver β -galactosidase (IC₅₀ = 52 μ M) than 11. Alkaloids 13 and 14 were shown to be inhibitory toward mammalian α -glucosidase (IC₅₀ = 45 and 77 μ M, respectively), and alkaloid **14** was demonstrated as a moderate inhibitor of bacterial β -glucosidase (IC₅₀ = 48 μ M).

Glycosidases are involved in several important anabolic and catabolic process, such as intestinal digestion, lysosomal catabolism, and post-translational modification, which are closely related to the endoplasmic reticulum (ER) quality control and ER-associated degradation of glycoproteins. Thus, glycosidase-inhibiting iminosugars could have enormous potential applications as biochemical tools and therapeutic agents.¹ These iminosugars can inhibit various glycosidases because of a structural resemblance to their sugar moiety to natural substrates. For example, N-hydroxyetheyl-1deoxynojirimycin (Glyset), which corresponds to an α -D-glucose configuration, has been approved as a second-generation α -glucosidase inhibitor to treat type-2 diabetes.² N-Butyl-1-deoxynojirimycin (Zavesca) is an inhibitor of ceramide-specific glucosyltransferase³ and has been approved for the oral treatment of substrate reduction therapy in type-1 Gaucher disease. The iminosugar derivatives α -6-*C*-nonylisofagomine,⁴ α -1-*C*-nonyl-1,5-dodeoxy-1,5-iminoxylitol,⁵ and α -1-C-octyl-1-deoxynojirimycin⁶ are candidates as oral agents of pharmacological chaperone therapy in type-1 Gaucher disease.

Naturally occurring iminosugars are classified into five structural classes: polyhydroxylated pyrrolidines, piperidines, indolizidines, pyrrolizidines, and nortropans. The distribution of polyhydroxylated piperidine and pyrrolidine alkaloids appears to be widespread in many unrelated families. On the other hand, polyhydroxylated pyrrolizidine alkaloids appear to be restricted to specific families.^{7,8} Consequently, the search for lead compounds of this type from natural sources tends to be constrained compared to other compound classes. Pyrrolizidine alkaloids with a hydroxymethyl substituent at C-3 have long been thought to be rare in nature, because almost all classes of pyrrolizidine alkaloids bear a carbon substituent at C-1.9,10 In 1988, the first polyhydroxylated pyrrolizidine alkaloid with a hydroxymethyl group at C-3 was isolated from pods of Alexa leiopetala (Leguminosae) and designated alexine.¹¹ The Australian legume Castanospermum australe is also known to produce the same structural type of pyrrolizidines, such as australine (7a-epialexine) and its isomers.¹² The alexines and australines have been

reported in only two small genera of the Leguminosae, and the highly polyhydroxylated pyrrolizidine casuarine occurs only in related genera in the Casuarinaceae and Myrtaceae.¹³ Recently, representatives of a new type of polyhydroxylated pyrrolizidine alkaloids have been isolated from Hyacinthoides non-scripta and Scilla campanulata, and named hyacinthacines.¹⁴ We later isolated hyacinthacines A₁, A₂, A₃, B₃, and C₁ from Muscari armeniacum bulbs.¹⁵ Hyacinthacines are basically characterized as 7aR-hydro-1,2-dihydroxy-3-hydroxymethylpyrrolizidines, with a methyl or hydroxymethyl group at C-5 and with hydroxyl substituents present at C-6 and/or C-7 in some cases. Furthermore, the known hyacinthacines have been classified into three groups, A, B, and C, on the basis of the number of hydroxyl and hydroxymethyl groups on the second ring. The total syntheses of hyacinthacines A₂ and A₁ were accomplished in 2001 and 2005, respectively.^{16,17} Some novel approaches in this regard have been reported since then.^{18,19} However, the syntheses of hyacinthacines would require some alteration because of the lengthy process and/or a lack of selectivity. The distribution of hyacinthacines appears to be restricted to the family Hyacinthaceae, and the genus Scilla is an especially rich source of these compounds. Hyacinthacines A4, A5, A₆, A₇, B₃, B₄, B₅, and B₆ have been isolated from *Scilla sibirica* bulbs,²⁰ and hyacinthacine derivatives bearing a long side chain at C-5 have been isolated from Scilla peruviana bulbs.²¹ The present search for hyacinthacines in the Hyacinthaceae has led to the isolation from Scilla socialis bulbs of 11 hyacinthacines, including six new and five known pyrrolizidines. In this paper, we describe the isolation and structural determination of these alkaloids and their inhibitory activities toward glycosidase enzymes.

Results and Discussion

The bulbs (2.3 kg) of S. socialis were extracted with 50% aqueous EtOH. The chromatographic separation of the extract using various ion-exchange resins led to isolation of 16 alkaloids (1-16). The ¹H NMR and ¹³C NMR spectra of alkaloids 1 and 2 were in accord with those of 2,5-dideoxy-2,5-imino-D-glycero-D-mannitol (homoDMDP) and 6-deoxy-6-C-(2,5-dihydroxyhexyl)-DMDP, respectively, which have been isolated previously from Hyacinthus orientalis and H. non-scripta.^{14,22} The biosynthesis of the hyacinthacines has not been elucidated yet, but homoDMDP can be speculated as being an important intermediate compound because

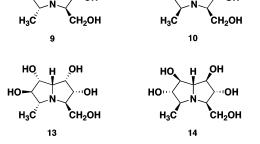
^{*} Author to whom correspondence should be addressed. E-mail: kato@ med.u-toyama.ac.jp. † University of Toyama.

[§] Institute of Grassland and Environmental Research.

[‡] University of Oxford.

[⊥] Hokuriku University.

5


н

OH

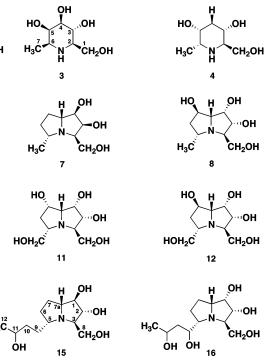
HO

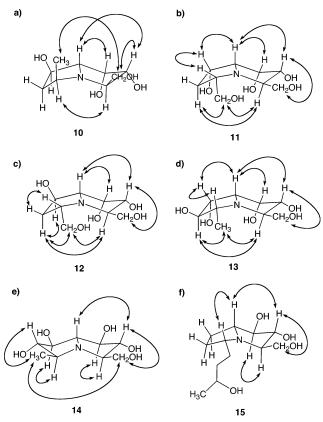
OH

the distribution of homoDMDP and hyacinthacine is closely related and appears to be restricted to the family Hyacinthaceae. Alkaloids 3 and 4 were identified as β -L-homofuconojirimycin and α -7deoxyhomonojirimycin (α-7-deoxy-HNJ), respectively, from an analysis of their ¹H NMR and ¹³C NMR spectroscopic data. We have isolated these piperidine alkaloids previously from Angylocalyx pynaertii²³ and S. sibirica.²⁰ The optical rotation and ¹H and ¹³C NMR spectroscopic data of alkaloids 6-8, 9, and 16 were in accord with those of the polyhydroxylated pyrrolizidines hyacinthacines A₃, A₅, B₃, and B₄ and α-5-C-(1,3-dihydroxybutyl)hyacinthacine A₁ isolated earlier from *M. armeniacum*,¹⁵ *S. sibirica*,²⁰ and *S.* peruviana.²¹ The structural determination of the new alkaloids 5 and 10-15 is described below.

Alkaloid 5 was determined to have the molecular formula C₈H₁₇NO₄ by HRFABMS. The ¹³C NMR spectroscopic data revealed the presence of a single methyl (δ 13.4), two methylenes $(\delta 24.3, 63.4)$, and five methine $(\delta 57.8, 62.1, 71.2, 73.7, 74.1)$ carbon atoms. The connectivity of the carbon and hydrogen atoms was defined from COSY and HMBC spectroscopic data. Two methine signals (δ 57.8 and 62.1) with relatively high-field chemical shifts were suggestive of being bonded to the nitrogen of the piperidine ring. The methylene signal at δ 63.4 (C-6) was attributed to the hydroxymethyl carbon. The HMBC spectrum indicated the presence of the ethyl group at C-1. These results suggested that alkaloid 5 is the C-alkyl derivative of 1-deoxynojirimycin or its epimer bearing the ethyl group at C-1. In the ¹H NMR spectrum, the coupling patterns of H-4 (t, $J_{3,4} = J_{4,5} = 9.5$ Hz) and H-2 (t, $J_{1,2} = J_{2,3} = 2.5$ Hz) indicated axial orientations of H-3, H-4, and H-5 and the equatorial orientation of H-2. The NOE correlation between H-1 and H-3 suggested the axial orientation of H-1. Hence, alkaloid **5** was established as β -1-C-ethyl-1-deoxymannojirimycin.

Alkaloid 10 was determined to have the molecular formula C₉H₁₇-NO₄ by HRFABMS (m/z 204.1233 [M + H]⁺). This alkaloid gave a tetra-O-SiMe3 derivative, and its GC-MS analysis showed a characteristic fragment ion at m/z 476 [M – CH₃]⁺ and a base peak at m/z 388 [M - CH₂OSiMe₃]⁺. The ¹H and ¹³C NMR spectroscopic features of 10 were similar to those of hyacinthacine B₃ (8). The ${}^{13}C$ NMR spectroscopic data revealed the presence of a single methyl, two methylenes, and six methine carbon atoms, as shown in Table 1. The signals in the ¹H and ¹³C NMR spectra




Table 1. ¹³C NMR Spectroscopic Data of Hyacinthacines **10–15** at 500 MHz in D_2O^a

С	10	11	12	13	14	15
1	77.9	75.4	72.2	75.2	78.2	82.6
2	74.9	78.3	75.4	77.3	81.0	80.8
3	66.2	66.0	65.5	65.1	65.1	65.4
5	57.7	64.0	67.5	62.0	61.4	66.6
6	45.2	40.8	39.4	82.9	81.7	31.4
7	76.5	75.1	71.7	80.0	77.8	30.5
7a	69.9	70.4	79.9	67.3	69.2	70.7
8	66.8	66.6	61.7	66.4	65.7	65.1
9	18.4	64.2	61.8	16.0	15.7	28.5
10						39.0
11						70.9
12						24.6

^a Chemical shifts are expressed in ppm downfield from sodium 3-(trimethylsilyl)propionate (TSP).

were assigned from the HMQC, COSY, and HMBC spectroscopic data. The relative configurations of the stereogenic centers in 10 were corroborated by the NOE effects (Figure 1a) and ${}^{3}J_{H,H}$ coupling constants (Table 2). Coupling patterns of H-1 ($J_{7a,1} = J_{1,2} = 4.4$ Hz) and H-2 ($J_{1,2} = 4.4$ Hz, $J_{2,3} = 7.6$ Hz) and the NOE correlations between H-7a and H-1 and between H-7a and H-2 indicated that H-7a, H-1, and H-2 are on the same side of the ring, and H-2 and H-3 are in a pseudo-trans-axial position. The large coupling constant (7.6 Hz) observed between H-7a and H-7 suggested that they are in a pseudo-trans-axial position. The NOE correlations observed between the C-9 (CH₃) proton and the C-8 (CH₂OH) proton and between H-2 and the C-8 (CH₂OH) proton indicated that these side chains are on the same side of the molecule. Thus, alkaloid 10 was determined to be (1S,2R,3R,5S,7R,7aR)-3-hydroxymethyl-5-methyl-1,2,7-trihydroxypyrrolizidine, or its enantiomer, and has been designated hyacinthacine B7.

The HRFABMS of alkaloids 11-14 showed the same molecular formula, C₉H₁₇NO₅. Alkaloids 11-14 gave a penta-O-SiMe₃ derivative, and the GC-MS analysis showed a characteristic fragment ion at m/z 564 [M – CH₃]⁺ and a base peak at m/z 476 $[M - CH_2OSiMe_3]^+$. The ¹H and ¹³C NMR spectroscopic features of 11 were similar to those of 12. The ¹³C NMR spectra of 11 and 12 revealed the presence of three methylenes and six methine carbon

Figure 1. NOE interactions of hyacinthacines $B_7(10)$ (a), $C_2(11)$ (b), $C_3(12)$ (c), $C_4(13)$ (d), and $C_5(14)$ (e) and α -5-*C*-(3-hydroxybutyl)hyacinthacine $A_2(15)$ (f).

Table 2. ¹H NMR Spectroscopic Data of Hyacinthacine B_7 (10) and α -5-*C*-(3-Hydroxybutyl)hyacinthacine A_2 (15) at 500 MHz in D_2O^a

position	10	15
1	4.35 t (4.4) ^b	3.76 t (6.9)
2	3.97 dd (4.4, 7.6)	3.96 t (6.9)
3	3.29 ddd (7.6, 5.5, 3.5)	2.18 ddd (5.0, 5.7, 6.9)
5	3.22 m	3.09 m
6α	1.68 m	1.62 m
6β	2.16 m	1.93 m
7α	4.50 m	1.87 m
7β		1.95 m
7α	3.45 dd (4.4, 7.6)	3.40 m
8	3.57 dd (3.5, 11.5)	3.73 dd (5.0, 12.0)
8'	3.63 dd (5.5, 11.5)	3.75 dd (5.7, 12.0)
9	1.25 d (7.0)	1.46 m
9'		1.95 m
10		1.46 m
10'		1.62 m
11		3.86 m
12		1.19 d (6.0)

 a Chemical shifts are expressed in ppm downfield from sodium 3-(trimethylsilyl)propionate (TSP). bJ in Hz.

atoms, as shown in Table 1. The signals in the ¹H and ¹³C NMR spectra were assigned by HMQC, COSY, and HMBC NMR spectroscopic analyses. The methylene signals at δ 66.6 (C-8) and 64.2 (C-9) in **11** and those at δ 61.7 (C-8) and 61.8 (C-9) in **12** were attributed to the hydroxymethyl carbons attached to C-3 and C-5, respectively. The relative configurations at the stereogenic centers in **11** and **12** were corroborated by the NOE effects (Figures 1b, 1c) and ³*J*_{H,H} coupling constants (Table 3). In alkaloid **11**, the coupling pattern (dd, $J_{1,2} = 4.4$, $J_{2,3} = 7.6$ Hz) of H-2 in the ¹H NMR spectrum suggested that H-1 and H-2 are in a *cis* arrangement, and H-2 and H-3 are a pseudo-*trans*-axial pair. The definite NOE interactions between H-7a and H-2, between H-7 and H-7a, and between H-5 and H-7 indicated that H-1, H-2, H-5, H-7, and H-7a

are on the same side of the ring. Thus, alkaloid **11** was determined to be (1S,2R,3R,5R,7S,7aR)-3,5-dihydroxymethyl-1,2,7-trihydroxypyrrolizidine or its enantiomer and was designated hyacinthacine C₂. NOE correlations were observed between H-7 and H-5 in **11** but were absent in **12**. The NOE interaction between H-7 and H-6 α in **12** suggests that H-7 is in the α -orientation. Consequently, alkaloid **12** was determined to be (1S,2R,3R,5S,7R,7aR)-3,5dihydroxymethyl-1,2,7-trihydroxypyrrolizidine, or its enantiomer, and was designated hyacinthacine C₃.

The ¹H and ¹³C NMR spectroscopic features of 13 and 14 were similar to those of hyacinthacine C_1 , which has been found in H. non-scripta.14 The signals in the 1H and 13C NMR spectra were assigned from analysis of the HMQC, COSY, and HMBC spectra. The relative configurations at the various stereogenic centers in 13 and 14 were corroborated by observed NOE effects (Figures 1d, 1e) and ${}^{3}J_{H,H}$ coupling constants (Table 3). In alkaloid 13, the coupling patterns of H-1 (t, $J_{1,2} = J_{7a,1} = 4.0$ Hz) and H-2 (dd, $J_{1,2}$ = 4.0, $J_{2,3}$ = 8.7 Hz) and the strong NOE correlations between H-7a and H-1 and between H-7a and H-2 suggested that the orientations of H-7a, H-1, H-2, and H-3 are β , β , β , and α , respectively. Irradiation of H-3 at δ 3.38 enhanced the NOE intensity of the C-9 (CH₃) proton and H-6, and a strong NOE between H-5 and H-7 was also observed. From these results, it was found that H-1, H-2, H-5, H-7, H-7a, and the hydroxymethyl group on C-3 are on the same side of the ring, and H-3, H-6, and the methyl group on C-5 are on the opposite side. A large coupling constant (8.2 Hz) observed between H-7a and H-7 could be attributed to the dihedral angle between them being close to 0°. Thus, alkaloid 13 was determined to be (1S,2R,3R,5R,6R,7R,7aR)-3-hydroxymethyl-5-methyl-1,2,6,7-tetrahydroxypyrrolizidine, or its enantiomer, and was designated hyacinthacine C₄. In alkaloid 14, the large coupling patterns of H-1 (t, J = 7.6 Hz), H-2 (t, J = 7.6Hz), and H-6 (t, J = 7.6 Hz) indicated that H-1, H-2, H-3, H-5, H-6, H-7, and H-7a are all in pseudo-trans-axial positions. These configurations were also supported by the NOE correlations between H-7a and H-2, between H-1 and H-3, and between H-5 and H-7. Thus, alkaloid 14 was determined to be (1R,2R,3R,5S,6S,7S,7aR)-3-hydroxymethyl-5-methyl-1,2,6,7-tetrahydroxypyrrolizidine, or its enantiomer, and was designated hyacinthacine C₅.

Alkaloid 15 was determined to have the molecular formula C₁₂H₂₃NO₄ by HRFABMS. The ¹³C NMR spectrum showed the presence of a single methyl (δ 24.6), five methylenes (δ 28.5, 30.5, 31.4, 39.0, 65.1), and six methine (δ 65.4, 66.6, 70.7, 70.9, 80.8, 82.6) carbon atoms (Table 1), which were very similar to those of α -5-C-(3-hydroxybutyl)hyacinthacine A₁ isolated from S. peruviana.²¹ These results suggested that alkaloid 15 is an epimer of α -5-C-(3-hydroxybutyl)hyacinthacine A₁. The connectivity of the carbon and hydrogen atoms was defined from the COSY and HMBC NMR spectra. The ¹H-¹H COSY and HMBC spectra indicated that the presence of the hydroxymethyl carbon (δ 65.1) at C-3 and a 3-hydroxybutyl group at C-5. The relative configurations at the stereogenic centers in 15 were determined from NOE correlations and from the ${}^{3}J_{H,H}$ coupling constants (Table 2). Irradiation of H-7a enhanced the NOE signal intensity of H-2 and H-5. These results indicated that H-7a, H-2, and H-5 are on the same side of the ring, and H-1 and H-3, on the basis of an NOE between H-2 and the C-8 (CH₂OH) proton, are on the opposite side. Hence, alkaloid 15 was determined to be α -5-C-(3-hydroxybutyl)hyacinthacine A₂.

The IC₅₀ values of the alkaloids isolated from *S. socialis* toward various glycosidases are shown in Table 4. β -1-*C*-Hydroxymethyl-1-deoxymannojirimycin (β -homomannojirimycin) is known to be a fairly potent inhibitor of α -glucosidases and α -L-fucosidases with IC₅₀ values in the μ M range.²² The new alkaloid, β -1-*C*-ethyl-1-deoxymannojirimycin (**5**), showed abolished or lowered inhibition toward these enzymes, but exhibited inhibitory activity toward bacterial β -glucosidase (IC₅₀ = 51 μ M) and bovine liver β -galactosidase (IC₅₀ = 86 μ M). We reported previously that most of

Table 3. ¹H NMR Spectroscopic Data of Hyacinthacines C_2 (11), C_3 (12), C_4 (13), and C_5 (14) at 500 MHz in D_2O^a

position	11	12	13	14 4.01 t (7.6)	
1	4.16 t (4.4) ^b	4.32 t (4.4)	4.18 t (4.0)		
2	3.85 dd (4.4, 7.6)	4.04 dd (4.4, 9.5)	4.00 dd (4.0, 8.7)	3.80 t (7.6)	
3	3.33 ddd (5.0, 5.7, 7.6)	3.50 m	3.38 dt (4.6, 8.7)	3.01 m	
5	3.24 m	3.84 ol ^c	2.96 dq (6.9, 9.2)	2.81 dq (6.9, 7.6)	
6a	1.78 m	1.93 m	3.90 dd (8.2, 9.2)	3.60 t (7.6)	
6b	2.03 m	2.07 m			
7	4.40 m	4.56 ddd (2.5, 4.4, 2.5)	4.15 t (8.2)	3.99 t (7.6)	
7a	3.39 dd (4.4, 6.9)	3.85 ol	3.57 dd (3.7, 8.2)	3.24 t (7.6)	
8	3.54 dd (5.7, 12.0)	3.69 dd (3.2, 12.6)	3.65 d (4.6)	3.50 dd (5.3, 12.0)	
8'	3.61 dd (5.0, 12.0)	3.85 dd (3.2, 12.6)	3.65 d (4.6)	3.55 dd (4.1, 12.0)	
9	3.66 dd (5.0, 12.0)	3.79 dd (6.2, 12.0)	1.29 d (6.9)	1.13 d (6.9)	
9'	3.85 dd (6.9, 12.0)	3.84 ol			

^a Chemical shifts are expressed in ppm downfield from sodium 3-(trimethylsilyl)propionate (TSP). ^bJ in Hz. ^c Overlapped (ol).

Table 4. Concentration of β -1-*C*-Ethyldeoxynojirimycin (5) and Hyacinthacines (10–15) Giving 50% Inhibition of Glycosidases

		IC ₅₀ (µM)					
enzyme	5	10	11	12	13	14	15
α-glucosidase							
rice	NI	NI	NI	NI	110	NI	NI
rat intestinal maltase	NI	NI	NI	NI	45	77	NI
β -glucosidase							
C. saccharolyticum	51	NI	13	25	660	48	NI
α -galactosidase							
coffee beans	NI	NI	NI	NI	NI	NI	NI
β -galactosidase							
bovine liver	86	NI	370	52	890	900	NI
α-mannosidase							
jack beans	NI	NI	NI	NI	NI	NI	NI
α-L-fucosidase							
human placenta	83	NI	17	NI	NI	NI	NI
amyloglucosidase							
Aspergillus niger	94	270	550	870	57	57	180

^{*a*} NI: no inhibition (less than 50% inhibition at 1000 μ M).

hyacinthacines are weak or moderate inhibitors of glycosidases.^{14,15,20} Hyacinthacine B₂ is a weak inhibitor of bacterial β -glucosidase and bovine liver β -galactosidase, with IC₅₀ values of 490 and 160 μ M, respectively.¹⁴ Introduction of an OH group to C-7 α in hyacinthacine B₂ to give hyacinthacine C₂ (**11**) and to C-7 β to give hyacinthacine C₃ (**12**) enhanced their inhibitory potential toward bacterial β -glucosidase, which showed IC₅₀ values of 13 and 84 μ M, respectively. Furthermore, hyacinthacine C₃ is also a good inhibitor of bovine liver β -galactosidase (IC₅₀ = 52 μ M). Introduction of an OH group at C-6 β in hyacinthacine B₅²⁰ to give hyacinthacine C₄ (**13**) enhanced its inhibitory potential toward intestinal maltase and amyloglucosidase, while hyacinthacine C₅ (**14**) was found to be a better inhibitor of bacterial β -glucosidase than hyacinthacine C₄.

We have reported previously that α -5-*C*-(1,3-dihydroxybutyl)hyacinthacine A₁ (**16**) and α -5-*C*-(1,3,4-trihydroxybutyl)hyacinthacine A₁ both show a potent inhibitory activity toward bacterial β -glucosidase (IC₅₀ = 5.1 and 11.4 μ M, respectively).²¹ Furthermore, broussonetine N, which has a C₁₀ side chain at C-5 α of hyacinthacine A₂, is well known as a potent inhibitor of β -glucosidase and β -galactosidase.²⁴ Although alkaloid **15** also can be regarded as the α -5-*C*-(3-hydroxybutyl) derivative of A₂, it lost inhibitory activity completely. These results reveal that not only the presence of a long side chain at C-5 α but also the number of OH groups in the side chain play very important roles in the inhibition of these compounds toward β -glucosidase.

Experimental Section

General Experimental Procedures. Optical rotations were measured with a JASCO DIP-370 digital polarimeter (Tokyo, Japan). ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on a Bruker DRX500 spectrometer. Chemical shifts are expressed in ppm downfield from sodium 3-(trimethylsilyl)propionate (TSP) in D₂O as

internal standard. The assignment of proton and carbon NMR signals was determined from extensive homonuclear decoupling experiments and the DEPT, ¹H-¹H COSY, HMQC, and HMBC spectroscopic data. FABMS were measured using glycerol as a matrix on a JEOL JMS-700 spectrometer. For GC-MS analyses, samples were dried and prepared as pertrimethylsilyl ethers at 60 °C for 20 min using Tri-Sil reagent (Pierce Biotechnology Inc., Rockford, IL). The column was a 25 m \times 0.25 mm VF-5ms "Factor Four" (film thickness, 0.25 μ m) capillary column (Varian Inc.), and the 25 min temperature program ran from 160 to 300 °C with an initial rate of increase of 10 °C/min and then held at 300 °C. The mass spectrometer was a Perkin-Elmer TurboMass Gold, with a quadrupole ion filter system, which was run at 250 °C constantly during analysis, and the mass range was set to 100 to 650 amu. The purity of samples was checked by HPTLC on silica gel 60F254 (E. Merck) using the solvent system PrOH-AcOH-H₂O (4:1:1), and a chlorine-o-tolidine reagent or iodine vapor was used for detection.

Plant Material. Plants of *Scilla socialis* Baker (syn. *Ledebouria socialis* Jessop), Hyacinthaceae, were purchased in July 2003 from Wyevale Limited (Hereford, U.K.) and grown in heated greenhouses. A voucher specimen (no. RJN200401) is deposited at the herbarium of the Institute of Grassland and Environmental Research, Aberystwyth, U.K.

Extraction and Isolation. The bulbs (2.3 kg) of S. socialis were homogenized in 50% aqueous EtOH. The filtrate was applied to a column of Amberlite IR-120B (2000 mL, H⁺ form). The 0.5 M NH₄-OH eluate was concentrated to give a brown oil (43.3 g), which was applied to Dowex 1-X2 (OH- form) to remove amino acids and pigments, and eluted with H2O. This eluate was concentrated and chromatographed over an Amberlite CG-50 column (2.0×55 cm, NH₄⁺ form) with H₂O as eluant (fraction size 8 mL). Fractions were divided into three pools: I (fractions 22-46, 13.3 g), II (fractions 47-84, 5.3 g), and III (fractions 85-128, 3.7 g). Each pool was further chromatographed with Dowex 1-X2 (OH⁻ form) with H₂O as eluant and/or aluminum oxide with 100-60% acetone as eluants to give alkaloids 1 (1014 mg), 4 (224 mg), 11 (259 mg), and 15 (154 mg) from pool I, $\mathbf{2}$ (526 mg), 3 (4 mg), 5 (50 mg), 12 (5 mg), 13 (151 mg), 14 (7 mg), and 16 (140 mg) from pool II, and 6 (148 mg), 7 (27 mg), 8 (30 mg), 9 (31 mg), and 10 (130 mg) from pool III.

β-1-C-Ethyl-1-deoxymannojirimycin (5): colorless powder; $[α]_D$ +5.0 (*c* 0.19, H₂O); ¹H NMR (500 MHz, D₂O) δ 0.97 (3H, t, *J* = 7.6 Hz, C-8), 1.60 (2H, m, H-7a, H-7b), 2.79 (1H, m, H-2), 2.98 (1H, m, H-6), 3.66 (1H, t, *J* = 9.5 Hz, H-3), 3.76 (1H, dd, *J* = 3.1, 9.5 Hz, H-4), 3.79 (2H, d, *J* = 3.5 Hz, H-1a, H-1b), 3.98 (1H, t, *J* = 2.5 Hz, H-5); ¹³C NMR (500 MHz, D₂O) δ 74.1 (C-4), 73.7 (C-5), 71.2 (C-3), 63.4 (C-1), 62.1 (C-6), 57.8 (C-2), 24.3 (C-7), 13.4 (C-8); HRFABMS *m*/*z* 192.1237 [M + H]⁺ (C₈H₁₈NO₄ requires 192.1236).

Hyacinthacine B₇ [($1S^*, 2R^*, 3R^*, 5S^*, 7R^*, 7a^*R$)-3-hydroxymethyl-5-methyl-1,2,7-trihydroxypyrrolizidine] (10): colorless powder; [α]_D -4.4 (*c* 0.20, H₂O); ¹H NMR, see Table 2; ¹³C NMR, see Table 1; HRFABMS *m*/*z* 204.1233 [M + H]⁺ (C₉H₁₈NO₄ requires 204.1236).

Hyacinthacine C₂ [(1*S**,2*R**,3*R**,5*R**,7*S**,7*a***R*)-3,5-dihydroxymethyl-1,2,7-trihydroxypyrrolizidine] (11): colorless powder; [α]_D +12.9 (*c* 0.22, H₂O); ¹H NMR, see Table 3; ¹³C NMR, see Table 1; HRFABMS *m*/*z* 220.1187 [M + H]⁺ (C₉H₁₈NO₅ requires 220.1185).

Hyacinthacine C₃ [($1S^*, 2R^*, 3R^*, 5S^*, 7R^*, 7a^*R$)-3,5-dihydroxymethyl-1,2,7-trihydroxypyrrolizidine] (12): colorless powder; [α]_D +3.5 (*c* 0.23, H₂O); ¹H NMR, see Table 3; ¹³C NMR, see Table 1; HRFABMS m/z 220.1186 [M + H]⁺ (C₉H₁₈NO₅ requires 220.1185).

Hyacinthacine C₄ [($1S^*, 2R^*, 3R^*, 5R^*, 6R^*, 7R^*, 7a^*R$)-3-hydroxymethyl-5-methyl-1,2,6,7-tetrahydroxypyrrolizidine] (13): colorless powder; [α]_D -37.9 (*c* 0.44, H₂O); ¹H NMR, see Table 3; ¹³C NMR, see Table 1; HRFABMS *m*/*z* 220.1186 [M + H]⁺ (C₉H₁₈NO₅ requires 220.1185).

Hyacinthacine C₅ [(1*R**,2*R**,3*R**,5*S**,6*S**,7*S**,7a**R*)-3-hydroxymethyl-5-methyl-1,2,6,7-tetrahydroxypyrrolizidine] (14): colorless powder; [α]_D +1.5 (*c* 0.22, H₂O); ¹H NMR, see Table 3; ¹³C NMR, see Table 1; HRFABMS *m*/*z* 220.1183 [M + H]⁺ (C₉H₁₈NO₅ requires 220.1185).

 α -**5-***C***-(3-Hydroxybutyl)hyacinthacine A₂ (15):** colorless syrup; [α]_D +1.2 (*c* 0.25, H₂O); ¹H NMR, see Table 2; ¹³C NMR, see Table 1; HRFABMS *m/z* 246.1707 [M + H]⁺ (C₁₂H₂₄NO₄ requires 246.1705).

Glycosidase Inhibitory Activities. The enzymes α -glucosidase (from rice, assayed at pH 5.0; from yeast, assayed at pH 6.8), β -glucosidase (from C. saccharolyticum, pH 5.0), α -galactosidase (from coffee bean, pH 6.5), β -galactosidase (from bovine liver, pH 6.8), α -mannosidase (from jack beans, pH 4.5), α -L-fucosidase (from human placenta, pH 5.5), amyloglucosidase (from Aspergillus niger, pH 4.5), p-nitrophenyl glycosides, and various disaccharides were purchased from Sigma Chemical Co. Brush border membranes were prepared from the rat small intestine according to the method of Kessler et al.25 and were assayed at pH 5.8 for rat intestinal maltase using maltose. For rice α -glucosidase and rat intestinal maltase activities, the reaction mixture (0.2 mL) contained 25 mM maltose and the appropriate amount of enzyme, and the incubations were performed for 10-30 min at 37 °C. The reaction was stopped by heating at 100 °C for 3 min. After centrifugation (600 g; 10 min), 0.05 mL of the resulting reaction mixture was added to 3 mL of the Wako glucose CII-test (Wako Pure Chemical Ind., Osaka, Japan). The absorbance at 505 nm was measured to determine the amount of the released D-glucose. Other glycosidase activities were determined using an appropriate p-nitrophenyl glycoside as substrate at the optimum pH of each enzyme. The reaction mixture (1 mL) contained 2 mM of the substrate and the appropriate amount of enzyme. The reaction was stopped by adding 2 mL of 400 mM Na₂CO₃. The released *p*-nitrophenol was measured spectrometrically at 400 nm.

References and Notes

- (1) Asano, N. Glycobiology 2003, 13, 93R-104R.
- (2) Mitrakou, A.; Tountas, N.; Raptis, A. E.; Bauer, R. J.; Schulz, H.; Raptis, S. A. Diab. Med. 1998, 15, 657–660.
- (3) Platt, F. M.; Neises, G. R.; Dwek, R. A.; Butters, T. D. J. Biol. Chem. 1994, 269, 8362–8365.
- (4) Zhu, X.; Sheth, K. A.; Li, S.; Chang, H. H.; Fan, J. Q. Angew. Chem., Int. Ed. 2005, 44, 7450–7453.

- (5) Compain, P.; Martin, O.; Boucheron, C.; Godin, G.; Yu, L.; Ikeda, K.; Asano, N. *ChemBioChem* **2006**, *7*, 1356–1359.
- (6) Yu, L.; Ikeda, K.; Kato, A.; Adachi, I.; Godin, G.; Compain, P.; Martin, O.; Asano, N. Bioorg. Med. Chem. 2006, 14, 7736–7744.
- (7) Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J. *Tetrahedron Asymmetry* 2000, 11, 1645–1680.
- (8) Watson, A. A.; Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J. Phytochemistry 2001, 56, 265–295.
- (9) Wrobel, J. T. In *The Alkaloids: Chemistry and Pharmacology*; Brossi, A. Ed.; Academic Press: New York, 1985; Vol. 26, pp 327–385.
- (10) Robins, D. J. In *The Alkaloids: Chemistry and Pharmacology*; Cordell, G. A., Ed.; Academic Press: New York, 1995; Vol. 46, pp 1–61.
- (11) Nash, R. J.; Fellows, L. E.; Dring, J. V.; Fleet, G. W. J.; Derome, A. E.; Hamor, T. A.; Scofield, A. M.; Watkin, D. J. *Tetrahedron Lett.* **1988**, *29*, 2487–2490.
- (12) Kato, A.; Kano, E.; Adachi, I.; Molyneux, R. J.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J.; Wormald, M. R.; Kizu, H.; Ikeda, K.; Asano, N. *Tetrahedron Asymmetry* **2003**, *14*, 325–331.
- (13) Nash, R. J.; Watson, A. A.; Asano, N. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Elsevier: Oxford, 1996; Vol. 11, pp 375–376.
- (14) Kato, A.; Adachi, I.; Miyauchi, M.; Ikeda, K.; Komae, T.; Kizu, H.;
 Kameda, Y.; Watson, A. A.; Nash, R. J.; Wormald, M. R.; Fleet, G.
 W. J.; Asano, N. *Carbohydr. Res.* **1999**, *316*, 95–103.
- (15) Asano, N.; Kuroi, H.; Ikeda, K.; Kizu, H.; Kameda, Y.; Kato, A.; Adachi, I.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J. *Tetrahedron Asymmetry* **2000**, *11*, 1–8.
- (16) Rambaud, L.; Compain, P.; Martin, O. R. *Tetrahedron Asymmetry* 2001, *12*, 1807–1809.
- (17) Chabaud, L.; Landais, Y.; Renaud, P. Org. Lett. 2005, 7, 2587–2590.
- (18) Izquierdo, I.; Plaza, M. T.; Franco, F. E.; Liguori, F.; Cacciarini, M.; Goti, A. *Tetrahedron Asymmetry* **2003**, *14*, 3933–3935.
- (19) Donohoe, T. J.; Sintim, H. O.; Hollinshead, J. J. Org. Chem. 2005, 70, 7297-7304.
- (20) Yamashita, T.; Yasuda, K.; Kizu, H.; Kameda, Y.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J.; Asano, N. J. Nat. Prod. 2002, 65, 1875– 1881.
- (21) Asano, N.; Ikeda, K.; Kasahara, M.; Arai, Y.; Kizu, H. J. Nat. Prod. 2004, 67, 846–850.
- (22) Asano, N.; Kato, A.; Miyauchi, M.; Kizu, H.; Kameda, Y.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J. J. Nat. Prod. 1998, 61, 625–628.
- (23) Asano, N.; Yasuda, K.; Kizu, H.; Kato, A.; Fan, J. Q.; Nash, R. J.; Fleet, G. W. J.; Molyneux, R. J. Eur. J. Biochem. 2001, 268, 35– 41.
- (24) Shibano, M.; Nakagawa, S.; Kubori, M.; Minoura, K.; Kusano, G. Chem. Pharm. Bull. 1998, 46, 1416–1420.
- (25) Kessler, M.; Acuto, O.; Strelli, C.; Murer, H.; Semenza, G. A. Biochem. Biophys. Acta 1978, 506, 136–154.

NP0700826